O(1)-C(1)-	-C(2)	114.9 (3)		C(1)	C(6)-	-C(5)		116.6 (3)	
O(1) - C(1)	-C(6)	122.9 (3)		Cij	C(6)-	$-\mathbf{C}(7)$		121.3 (3)	
C(2) - C(1)	-C(6)	122.1 (4)		C(5)-	C(6)-	$-\mathbf{C}(7)$		122.1 (3)	
C(1)-C(2)-	$-\mathbf{C}(3)$	119.4 (3)		C(4)-	N(1)-	-N(2)		119.2 (3)	
C(1)-C(2)-	-C(8)	119.1 (3)		N(1)	N(2)-	-C(9)		121.9 (3)	
C(3)-C(2)-	-C(8)	121.5 (3)		N(2)-	C(9)-	-C(10)	117.4 (3)	
C(2)-C(3)-	-C(4)	118.9 (3)		N(2)-	C(9)-	-C(14)	120.9 (3)	
C(3)-C(4)-	-C(5)	120.7 (3)		C(10)-	-Ċ(9)	-C(14	4)	121.7 (4)	
C(3)-C(4)-	-N(1)	125.0 (3)		C(9)-	C(10)	-C(1)	1)	119.6 (3)	
C(5)-C(4)-	-N(1)	114.2 (3)		C(10)-	-Ċ(1	.)—Ċ(I	12)	119.6 (3)	
C(4)-C(5)-	-C(6)	122.2 (3)		C(11)-	-C(12	2)—C(13)	120.0 (4)	
C(11)-C(12	2)—S	119.6 (3)		C(9)	C(14)	-C(1	3)	118.1 (3)	
C(13)-C(12	2)—S	120.4 (3)		C(12)-	-C(13	B)—C(14)	121.0 (3)	
C(12)-S	O(2)	105.7 (2)		C(12)-	-s(D(3)		106.1 (2)	
C(12)-S	O(4)	105.5 (2)		O(2)—	s_0	(3)		112.8 (2)	
O(2)—S—C	0(4)	113.1 (2)		0(3)-	s0	(4)		112.9 (2)	
	C(5)-C(4)-	-N(1)-N(2)			177	7.1 (3)		
	C(4)-N(1)-	-N(2)-C(9)			-177	7.9 (3)		
	N(1)—N(2)—	-C(9)-C(1	0)			170).8 (3)		
DH	IA		D	· · ·A		Ľ)Н	·A	
O(1)-H(1)	$\cdot \cdot \cdot O(5)$		2.5	41 (4)		_	151 (3))	
N(2)-H(20) $\cdot \cdot \cdot O(2^i)$		2.8	89 (4)			124 (3	,)	
N(2)-H(20	$) \cdots O(3^{ii})$		2.8	77 (4)			124 (3))	
O(5)-H(50	$) \cdot \cdot \cdot O(2^{iii})$		2.8	09 (4)			173 (4))	
O(5)—H(51)····O(4 ^{iv})		2.7	78 (4)			161 (4))	
Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (ii) x , y , $z - 1$; (iii) $\frac{1}{2} - x$, $\frac{1}{2} + \frac{1}{2}$									
$y_1 - \frac{1}{2} - z_2$; (iv) $-x_1 - y_2 - 1 - z_2$.									
		, , , ,	-						

Table 4. Selected geometric parameters (Å, °) for (II)

O(1)-C(1)	1.313 (3)	C(1) - C(2)		1.424 (3)	
C(2)—C(3)	1.365 (3)	C(3)—C(4)		1.413 (2)	
C(4)—C(5)	1.411 (3)	C(5)—C(6)		1.366 (3)	
C(6)—C(7)	1.501 (3)	C(1)—C(6)		1.426 (3)	
C(2)—C(8)	1.499 (3)	C(4)—N(1)		1.359 (3)	
N(1)—N(2)	1.276 (2)	N(2)—C(9)		1.417 (3)	
C(9)—C(10)	1.380 (3)	C(10)—C(11)		1.386 (3)	
C(11)—C(12)	1.386 (2)	C(12)—C(13)		1.388 (3)	
C(13)—C(14)	1.382 (3)	C(9)-C(14)		1.386 (3)	
C(12)—S	1.773 (2)	S—O(2)		1.454 (1)	
S—O(3)	1.447 (1)	S—O(4)		1.453 (2)	
O(1)—C(1)—C(2)	123.3 (2)	C(1)-C(6)-C(5)	5)	117.6 (2)	
O(1)-C(1)-C(6)	115.0 (2)	C(1)-C(6)-C(7)	119.6 (2)	
C(2)—C(1)—C(6)	121.7 (2)	C(5)—C(6)—C(7)	122.8 (2)	
C(1)—C(2)—C(3)	118.4 (2)	C(4)—N(1)—N(2)	120.4 (2)	
C(1)—C(2)—C(8)	120.8 (2)	N(1)-N(2)-C(9)	119.4 (2)	
C(3)—C(2)—C(8)	120.8 (2)	N(2)-C(9)-C(10)	117.8 (2)	
C(2)—C(3)—C(4)	121.1 (2)	N(2)-C(9)-C(14)	120.6 (2)	
C(3)—C(4)—C(5)	119.2 (2)	C(10)—C(9)—C	(14)	121.6 (2)	
C(3)—C(4)—N(1)	126.9 (2)	C(9)—C(10)—C	(11)	119.3 (2)	
C(5)—C(4)—N(1)	113.9 (2)	C(10)—C(11)—C	C(12)	119.9 (2)	
C(4)—C(5)—C(6)	121.8 (2)	C(11)—C(12)—C	C(13)	119.9 (2)	
C(9)—C(14)—C(13)	118.4 (2)	C(11)—C(12)—S	S	120.8 (1)	
C(13)—C(12)—S	119.3 (1)	C(12)-C(13)-C	C(14)	120.8 (2)	
C(12)SO(2)	106.33 (8)	C(12)-S-O(3)		106.05 (9)	
C(12)—S—O(4)	105.7 (1)	O(2)—S—O(3)		112.76 (9)	
O(2)—S—O(4)	112.56 (9)	O(3)SO(4)		112.76 (9)	
C(5)—C(4)—	-N(1)-N(2)	1	77.7 (3)		
C(4)N(1)	-N(2)-C(9)	-1	(77. 9 (3)		
N(1)—N(2)-	-C(9)-C10)	-1	170.0 (3)		
$D - H \cdots A$,	D A	<i>D</i> —Н··	٠A	
$O(1) - H(1) \cdots O(5)$	2.	555 (4)	163 (3)		
$N(2) - H(20) \cdot \cdot \cdot O(2^{i})$	2.	779 (3)	167 (3)	67 (3)	
$O(5) - H(50) \cdot \cdot \cdot O(4^{ii})$	2.	787 (5)	168 (3)	58 (3)	
$O(5) - H(51) \cdot O(3^{iii})$	2.	768 (2)	168 (3)		
Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) $-x, 1 - y, 2 - z$;					
(iii) x , $1 + y$, $1 + z$.					

In both structures, H atoms bonded to C atoms were placed in calculated positions. H atoms bonded to N atoms and O atoms were located in difference maps.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Data reduction: SDP (B. A. Frenz & Associates Inc., 1982). Program(s) used to solve structures: MULTAN80 (Main et al., 1980). Program(s) used to refine structures: SHELXL93 (Sheldrick, 1993). Program used for geometric calculations: PARST (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1174). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- Ehlinger, N., Lecocq, S., Perrin, R. & Perrin, M. (1993). Supramol. Chem. 2, 77-82.
- Hanson, A. W. (1973). Acta Cryst. B29, 454-460.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nomura, E., Taniguchi, H. & Otsuji, Y. (1993). Bull. Chem. Soc. Jpn, 66, 3797–3801.
- Nomura, E., Taniguchi, H. & Tamura, S. (1989). Chem. Lett. pp. 1125-1126.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Shinkai, S., Araki, K., Shibata, J., Tsugawa, D. & Manabe, O. (1989). Chem. Lett. pp. 931-934.
- Xu, B. & Swagen, T. M. (1993). J. Am. Chem. Soc. 115, 1159–1160.
 Yeh, M., Tang, F., Chen, S., Liu, W. & Lin, L. (1994). J. Org. Chem. 59, 754–757.

Acta Cryst. (1995). C51, 1849–1851

(2-Methoxyphenyl)(phenyl)vinylphosphine Oxide

WANDA WIECZOREK

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

(Received 17 January 1995; accepted 21 February 1995)

Abstract

In the molecule of the title compound, $C_{15}H_{15}O_2P$, the C=C-P=O fragment has an *S*-cis conformation. The methoxyphenyl ring assumes an almost coplanar arrangement with the P=O bond and is almost perpendicular to the phenyl ring.

Comment

X = P - C = C (where X = O, S, Se) vinylphosphine derivatives are reactive in the *S*-cis conformation; this is particularly important with respect to the optically active forms of vinylphosphine oxides, where a transfer of chirality occurs from the P to the C atom.

In this paper we present the structure of (2-methoxyphenyl)(phenyl)vinylphosphine oxide, (I). The molecular structure with labelling of the non-H atoms is shown in Fig. 1. As expected, the O1-P-C1-C2 torsion angle of $-5.3(3)^{\circ}$ indicates that the relative arrangement of the P=O and C=C groups in the molecule is Scis. Similar conformations have been found in the molecules of other vinylphosphine oxides (Pietrusiewicz, Zabłocka, Kuźnikowski, Wieczorek, Maniukiewicz & Rospenk, 1991; Pietrusiewicz, Zabłocka, Wieczorek & Brandi, 1991; Pietrusiewicz & Wieczorek, 1993), vinylphosphine sulfides (Pietrusiewicz, Kuźnikowski, Wieczorek & Brandi, 1992; Pietrusiewicz, Wieczorek, Cicchi & Brandi, 1991) and a vinylphosphine selenide (Pietrusiewicz, Kuźnikowski, Wieczorek & Brandi, 1992).

Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids for the non-H atoms.

The tetrahedral geometry about the P atom is deformed in the usual way, showing increased O = P. C and decreased C-P-C angles, with values in the ranges 110.6 (1)-112.3 (1) and 106.4 (1)-107.6 (1)°, respectively. This deformation is smaller than in the molecules cited above.

The methoxyphenyl ring assumes an almost coplanar arrangement with the P=O bond, contrary to the arrangement of P=O and the phenyl ring. The angles between the P=O bond and these rings are 1.7(1) and $52.0(1)^{\circ}$, respectively, while in the molecule of $(S_{\rm P})$ -L-menthyl(2-methoxyphenyl)phenylphosphinylacetate (Pietrusiewicz & Wieczorek, 1993) the corresponding

angles ares 10.0(1) and $12.1(1)^\circ$, respectively.

The dihedral angle between the planes of the two aryl rings is $88.2(1)^\circ$. The methoxy group lies practically in the plane of the aryl ring [C15-O2-C10-C11 = $-0.7(3)^\circ$].

Experimental

The title compound was prepared by the method of Maffei & Buono (1988). The crystal density D_m was measured by flotation in CH₃I + C₆H₆.

Crystal data

$C_{15}H_{15}O_2P$	Cu $K\alpha$ radiation
$M_r = 258.26$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 8.892(1) Å	$\theta = 16.0 - 25.0^{\circ}$
b = 8.614(1) Å	$\mu = 1.72 \text{ mm}^{-1}$
c = 18.094 (1) Å	T = 293 K
$\beta = 102.62 (1)^{\circ}$	Prism
$V = 1352.5 (2) Å^3$	$0.50 \times 0.36 \times 0.25$ mm
Z = 4	Colourless
$D_x = 1.268 \text{ Mg m}^{-3}$	
$D_m = 1.26 \text{ Mg m}^{-3}$	

 $R_{\rm int} = 0.013$

 $\theta_{\rm max} = 74.89^{\circ}$

 $h = -11 \rightarrow 0$

 $k = -10 \rightarrow 0$

 $l = -22 \rightarrow 22$

3 standard reflections

frequency: 60 min

intensity decay: 1.3%

- Data collection
- Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3181 measured reflections 2566 independent reflections 2323 observed reflections $[F > 4\sigma(F)]$

Refinement

 $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F R = 0.040 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.046Extinction correction: S = 2.41 $F^* = F_c [1.0 + (0.002\chi$ 2323 reflections $\times F_c^2/\sin\theta$]^{-1/4} 182 parameters Extinction coefficient: H atoms treated as riding $\chi = 0.011$ (1) atoms Atomic scattering factors $w = 1/[\sigma^2(F) + 0.00022F^2]$ from SHELXTL/PC $(\Delta/\sigma)_{\rm max} = 0.04$ (Sheldrick, 1990)

Table 1. Fractional atomic coordinates and equivalent Acta Cryst. (1995). C51, 1851–1853 isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	y	Z	U_{eq}
P	0.1668 (1)	0.1901 (1)	0.8535 (1)	0.049 (1)
01	0.1001 (2)	0.0315 (2)	0.8493 (1)	0.068 (1)
O 2	0.2808 (2)	0.5033 (2)	0.9112 (1)	0.071 (1)
C1	0.0662 (2)	0.3135 (3)	0.7799 (1)	0.063 (1)
C2	-0.0438 (3)	0.2553 (4)	0.7273 (2)	0.086(1)
C3	0.3663 (2)	0.1883 (2)	0.8477 (1)	0.050(1)
C4	0.4663 (3)	0.0983 (3)	0.9003 (1)	0.067 (1)
C5	0.6196 (3)	0.0875 (3)	0.8981 (2)	0.080(1)
C6	0.6756 (3)	0.1648 (3)	0.8434 (2)	0.078 (1)
C7	0.5791 (3)	0.2531 (3)	0.7912 (2)	0.075 (1)
C8	0.4241 (3)	0.2669 (3)	0.7931 (1)	0.061 (1)
C9	0.1597 (2)	0.2803 (2)	0.9423 (1)	0.048 (1)
C10	0.2200 (2)	0.4275 (2)	0.9640(1)	0.053 (1)
C11	0.2153 (3)	0.4863 (3)	1.0347 (1)	0.065 (1)
C12	0.1471 (3)	0.3995 (3)	1.0829 (1)	0.071 (1)
C13	0.0852 (3)	0.2558 (3)	1.0629 (1)	0.068 (1)
C14	0.0923 (2)	0.1969 (3)	0.9924 (1)	0.057 (1)
C15	0.3433 (4)	0.6549 (3)	0.9284 (2)	0.092 (1)

Table 2. Selected geometric parameters (Å, °)

	-		
P-01	1.484 (2)	O2-C10	1.363 (3)
PC1	1.783 (2)	O2-C15	1.427 (3)
Р—С3	1.800 (2)	C1—C2	1.307 (3)
Р—С9	1.799 (2)		
01—P—C1	112.3 (1)	C1PC9	107.4 (1)
O1-P-C3	112.2 (1)	С3Р-С9	106.4 (1)
01—P—C9	110.6 (1)	C10-02-C15	118.7 (2)
C1—P—C3	107.6 (1)	PC1C2	119.3 (2)

Data collection, reduction and cell refinement: CAD-4 Software (Enraf–Nonius, 1989). Structure solution, refinement, molecular graphics and preparation of material for publication: SHELXTL/PC (Sheldrick, 1990).

This research was supported by the Polish Scientific Research Council (KBN) under grant 2 0575 91 01. The author thanks M. Koprowski for the crystals and Professors M. Bukowska-Strzyżewska and K. M. Pietrusiewicz for helpful discussions.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: NA1158). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Maffei, M. & Buono, G. (1988). New J. Chem. 12, 923-927.
- Pietrusiewicz, K. M., Kuźnikowski, M., Wieczorek, W. & Brandi, A. (1992). Heteroatom Chem. 3, 37-40.
- Pietrusiewicz, K. M. & Wieczorek, W. (1993). Phosphorus Sulfur Silicon, 82, 99–107.
- Pietrusiewicz, K. M., Wieczorek, W., Cicchi, S. & Brandi, A. (1991). *Heteroatom Chem.* 2, 661–664.
- Pietrusiewicz, K. M., Zabłocka, M., Kuźnikowski, M., Wieczorek, W., Maniukiewicz, W. & Rospenk, M. (1991). *Heteroatom Chem.* 2, 111-122.
- Pietrusiewicz, K. M., Zabłocka, M., Wieczorek, W. & Brandi, A. (1991). Tetrahedron Asymmetry, 2, 419–428.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Diphenyl(2-oxocyclohexyl)phosphine Sulfide

MOHAMED BOUKRAA, TAHAR JOUINI, SALIM BARKALLAH, Azaeiz Ben Akacha, Hedi Zantour and Belgacem Baccar

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia

(Received 1 November 1994; accepted 1 February 1995)

Abstract

The structure of $(C_6H_5)_2(C_6H_9O)PS$ is reported. The phenyl groups are not magnetically equivalent and P=S and C=O are not coplanar.

Comment

We have reported recently a general route leading to the formation of the title compound, (I) (Barkallah, Ben Akacha, Boukraa, Zantour & Baccar, 1993).

 13 C and 1 H NMR data show that the phenyl groups linked to the P atom are not magnetically equivalent. X-ray diffraction data confirms this. Indeed, the torsion angles C2'--C1'-P--S and C2''--C1''-P--S are dif-

Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids.

Acta Crystallographica Section C ISSN 0108-2701 ©1995